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Abstract

For individuals with Type 1 diabetes (T1D) is of eminence importance to avoid hypo-
and hyperglycemic events.  The availability of long glucose time-series along with
powerful  AI  methods  allowed  the  development  of  glucose  prediction  algorithms.
Nonetheless open issues remain such as prediction time-delays, amount of history
needed,  and  how  heterogeneous  and  sparse  diabetes  information  affect  the
performance.

Materials and methods: In this study, we utilized data from 100 individuals with 
T1D provided by the Juvenile Diabetes Research Foundation. The dataset provides 
pump settings, sensor outputs (e.g. insulin-rates, continuous glucose monitoring- 
CGM) and conceptual information such as age, years of diabetes. To mitigate the 
adverse impact of large inter-patient variability, we propose a training scheme based 
on gradual fine-tuning. Initially, the novel AI-model is trained on all data and 
subsequently fine-tuned over groups with shared characteristics to individual patient-
level. The individuals with T1D are assigned to groups based on similarity measures 
defined using glucose variability indices. For each individual, an ensemble of five 
dedicated sequence-to-sequence LSTM networks is used. The ensemble uses CGM
data, bolus dose and meal intake as input and outputs blood glucose predictions 30 
min ahead in time.

Results: As shown in Table 1 the root-mean-square-error (RMSE), mean-average-
error (MAE), and time-lag used as performance measures for the various training
schemes.

Table 1: Initially, we trained our network on the entire population and utilized that global parameter set
as initialization for the fine-tuning per patient, the patient group training and the training on OhioT1DM
data. Within each group, subsequent fine-tuning per patient was applied.

Training scheme RMSE (mg/dL) MAE (mg/dL) Time-Lag (min.)
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CGM+insulin+carbohydrate intake 
from entire population

21.56 15.81 20.10

As above by fine-tuned per patient 19.56 14.05 19.30

CGM+insulin+carbohydrate intake 
per group of patients

19.59 13.98 19.60

As above but fine-tuned per patient 
within the groups

19.39 13.89 19.05

OhioT1DM Dataset 18.19 12.98 15.00

Conclusion: There is evidence that high performing AI-based prediction models do
not only depend on the algorithmic approach per se. The performance may increase
by identifying groups of patients that share common hidden metabolic patterns.
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